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Hydrogen atom in a strong magnetic field: on the existence 
of the third integral of motion 

Marko Robnik 
Institut fur Astrophysik der Universitat Bonn, Sonderforschungsbereich Radioastronomie, 
Auf dem Huge1 71, D-53 Bonn, Federal Republic of Germany 

Received 11 May 1981 

Abstract. The problem of the existence of the third integral of motion for the classical 
Hamiltonian describing a hydrogen atom in a magnetic field is studied by numerical 
methods. It is found that the third integral is isolating for all initial conditions for which the 
energy is lower than a critical energy, beyond which the phase orbits are unstable and the 
Hamilton system can behave stochastically. This critical energy depends upon the strength 
of the magnetic field and the value of the z component of the angular momentum. The 
critical energy approaches the (classical) ionisation energy in the weak-field and strong-field 
limits, while it is lowest in the transition region. The consequences for the quantum 
mechanical energy spectrum of the hydrogen atom are discussed: the existence of this 
approximate dynamical symmetry would allow for close anti-crossings of levels, and might 
facilitate the analytic calculations of the energy levels below the critical energy. In 
discussion of the correspondence diagram a criticism of an earlier paper is given. 

1. Introduction 

The problem of the hydrogen atom in an arbitrarily strong magnetic field has recently 
received more attention than ever before. In atomic physics new experimental and 
theoretical results on highly excited atoms in magnetic fields have been obtained (see 
the review by Rau (1980)) and in astrophysics much of the accumulated observational 
material on strongly magnetic white dwarfs (reviews by Angel (1977, 1978)) as well as 
on x-ray binaries (see review by Borner (1980), Kundt (1981)) requires a better 
theoretical understanding of atoms in magnetic fields. In the case of white dwarfs the 
polarisation measurements in the optical continuum, made by Kemp et a1 (1 970), 
revealed magnetic fields B s 5 x 108G, while the discovery by Trumper et a1 (1978) of 
an electron cyclotron line in the x-ray spectrum of Her X- 1 confirmed the theoretical 
prediction B = 5 x 1012G for the surface magnetic field of a neutron star (cf Mazets et a1 
1981). Other lines, such as FeXXVI, have been observed in x-ray binaries (Pravdo 
1978). A study of the properties of matter in strong magnetic fields is therefore of great 
importance for astrophysics, where magnetic fields can have strengths by a factor of lo7 
in excess of those available in a laboratory (Lata1 1975). 

Theoretical understanding of the hydrogen atom stands naturally at the very 
beginning of the structure of matter in strong magnetic fields. However, although the 
simplest this problem turns out to  be difficult enough. (See the review by Garstang 
(1977).) For instance, the two-body problem in a magnetic field was solved correctly 
only a few years ago (Avron et a1 1978), and it has been shown that the N-body problem 
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can be reduced to the ( N  - 1)-body problem iff the total charge of the system vanishes. 
But even when one assumes an infinite mass for the nucleus of the hydrogen atom, thus 
restricting the discussion to the one-particle system, the symmetry breaking presents 
great difficulties, since it leads to the non-integrability of the Hamiltonian. As a 
consequence little can be done analytically: perturbational methods are good only in 
the weak-field region (Zeeman region) (Schiff and Snyder 1939), variational methods 
work only for the ground state (Yafet et a1 1956); in the strong-field limit (Landau 
region) the adiabatic approximation together with a perturbation method can be used, 
but only for the lowest states (Canuto and Kelly 1972). Numerical works (Smith et a1 
1972, Praddaude 1972, Rau and Spruch 1976, Simola and Virtamo 1978, Wunner and 
Ruder 1981, Kara and McDowell 1980) improved the accuracy of the earlier estimates, 
but they still gave poor information on higher levels, on the spectrum in the inter- 
mediate region, and they still scatter in energy values by at least 10%. A very elegant 
analytical method has been recently presented by Mlodinow and Papanicolaou (1 979). 
The method is based on the l/Nexpansion ( N  = dimension of the configuration space), 
and has the advantage of being applicable to arbitrary field strengths, but it is still hard 
to obtain results for higher levels. Among other methods which have been attempted is 
the semiclassical quantisation (Angelie and Deutsch 1978). This was able to predict the 
spectrum in accordance with experiments only for the levels close enough to the 
zero-field ionisation limit (see Rau (1980) and references therein). Perhaps the results 
could be improved when using a more advanced method such as that developed by 
Gutzwiller (1978, 1980), who studied the semiclassical quantisation of systems with 
ergodic behaviour. An important paper promising more rapid progress has been 
published quite recently by Zimmerman et a1 (1980). There a numerical calculation of 
highly excited energy levels of a hydrogen atom in a magnetic field of intermediate 
strength has been reported. The accuracy of the method (diagonalisation of the 
Hamilton operator in the spherical basis) has been tested for the case of the Stark effect 
(for which analytical results are known due to existence of the Lenz-Pauli vector as an 
independent constant of motion). The result was a discovery of approximate level 
crossings (within a term group of given parity and angular momentum L,, which are the 
only known constants of motion beyond energy). Now, if parity and L, were the only 
existent symmetries of the hydrogen atom in a magnetic field, then according to the 
Neumann-Wigner (von Neumann and Wigner 1929) non-crossing rule, the levels could 
not cross. The existence of level crossings (or approximate crossings, i.e. close 
anti-crossings) led them to the conjecture that an additional, as yet unrecognised, 
dynamical symmetry of the Hamiltonian must exist. According to their results, the 
symmetry should be approximate and more effective as the energy of a level increases. 

The hydrogen atom in a magnetic field is neither the first nor the last non-integrable 
Hamilton system whose quantisation is to be done. Note, however, that even our 
understanding of the non-integrable classical Hamilton systems is rather poor in 
general, since the Kolmogorov-Arnold-Moser (KAM) theory (Whiteman 1977, Arnold 
and Avez 1968; see also the excellent review by Berry (1978)) applies only to  nearly 
integrable systems, i.e. to systems with a weak perturbation, to which the quantum 
mechanical perturbation theory can also be successfully applied. There is no exact 
theory which could predict the behaviour of a given system which is far from integrable 
(Zaslavskii and Chirikov 1972, Chirikov 1979). But there are numerical experiments 
(Henon and Heiles 1964, Casati and Ford 1975, Ali and Somorjai 1980) which give us a 
clue to what has to be done (Percival 1979, Berry 1982). Similarly, the semiclassical 
quantisation methods for non-integrable Hamiltonians are not far from the ideas put 
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forward by Einstein, although some progress has been made (Gutzwiller 1980, Neveu 
1977, Berry 1980,1982). As explained in the case of the hydrogen atom, the correct full 
quantisation of non-integrable systems is also at the beginning. Since the hydrogen 
atom in a strong magnetic field is a very important problem because of the applications, 
and since it is comparatively better studied than any other nonlinear quantum system, it 
seems appropriate to study the correspondence between the classical system and its 
quantal analogue. 

The philosophy of this analogy is to find the integrals of motion of the classical 
Hamiltonian, in particular the third integral 13(p ,  9). This is the essential result of this 
paper, where I3  is discovered by a numerical experiment. Once we have some insight 
into the nature and existence conditions of 13, we can use an algebraic approach (see e.g. 
Gustavson (1966), where a series of canonical transformations using a computer to do 
all the algebraic operations has been performed) to construct 13(p ,  9). When the 
dynamical symmetry announced by Zimmerman et a1 (1980) is constructed we may use 
it to approximately separate the Schrodinger equation for the hydrogen atom in a 
magnetic field. All attempts to construct I3 by elementary methods failed, and the 
construction using a method proposed above remains as a future plan. 

It turns out that this problem is even more attractive than it seems at first glance, 
because the Hamilton system is rich enough to display a stochastic behaviour (known 
since Henon and Heiles (1964)) which is currently of interest for physicists dealing with 
nonlinear phenomena (Zaslavskii and Chirikov 1972, Whiteman 1977, Rabinovich 
1978, Helleman 1980, Berry 1982). 

2. The classical Hamiltonian and its properties 

We assume an infinite mass for the proton and consider the classical motion of the 
electron in the Coulomb field and in a magnetic field. When the trivial paramagnetic 
term is transformed away (which can be done by using a uniformly rotating frame, a fact 
well known from the Larmor theorem, cf Landau and Lifshitz (1965)), the (non- 
relativistic) Hamiltonian can be written in the following dimensionless form: 

Here p 2 : = x 2 + y 2  and all lengths are measured in units of Bohr radius, the energy is 
measured in units of 2EH, EH being the ionisation energy of the hydrogen atom in a 
vacuum, while the magnetic field strength is measured in units of the critical magnetic 
field Bo, at which the Landau energy equals EH, so that ?:=BIBo, B o = a 3 e / r i =  
2.35 x lo9 G (a  is the fine structure constant, e the elementary charge, ro the classical 
electron radius, ro = e2/mc2) .  (See also Garstang (1977).) The choice of these non- 
classical units has been made merely to achieve a direct analogy with the quantum 
mechanical problem. Except for the energy E = H ( p ,  r )  the z component of the 
angular momentum, denoted simply by L, is the only constant of motion which derives 
from the geometrical symmetries via Noether’s theorem. If this is accounted for, the 
Hamiltonian can be ‘reduced’ in cylindrical coordinates (p,  cp, z )  as follows: 

2 - 1 i 2  H, = ; ( p i  + p : ) +  L2/2p2+$y2p2- ( p 2 +  2 1 , 

The problem of classical motion has now been reduced to the study of orbits in a 
four-dimensional phase space (p,  p p ,  z ,  p l ) .  The Hamilton equations read p = p p ,  p, = 
L ~ / ~ ~  - a Y z p  - p ( p 2  + z ~ ) - ~ / ~ ,  i = pz,  p z  = - z ( ~  2 + z 2 ) -312 . 
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The equipotential lines of the (effective) potential 

(3) U ( p ,  z ) : = L 2 / 2 p 2 + g y  1 2 p 2- ( p 2 + 2  2 ) - 1 / 2  

for L = y = 1 are plotted in figure 1. In general, the potential is minimal for z = 0 and 
p = po, where 

1 2  4 -  4y p 0 - L 2 - p 0 .  

0 2 P 4 

Figure 1. Equipotential lines of the potential U(p ,  z )  from equation (3) with y = L = 1. The 
numbers refer to the value of the potential. In this case E,,, = min U = -0.394 3046 and 
E,,, = 0.5. 

We define E,,, := U(p,, 0). The potential lines are closed for all energies E higher than 
E,,,,,, and smaller than the escape energy E,,, at which the potential lines open 
asymptotically and the particle can escape to infinity in the z direction. A simple 
calculation shows E,,, = $y/L/. (Note, however, that the escape energy E,,, does not 
coincide with the quantum mechanical ionisation energy Eion = $ y ( / L /  + l ) ,  which is 
higher by exactly the Landau energy. The reason is the quantum mechanical zero-point 
energy, which in this case equals the Landau energy y / 2 .  The particle is still trans- 
versally bounded after it has escaped the Coulomb potential well.) 

Our central question is whether a third integral I3  of motion exists or not. To decide 
this question a study of Poincare mappings generated by the Hamilton system seems to 
be the best approach (see Henon and Heiles 1964). For a reader not familiar with this 
method a brief explanation is given. The idea is to take a surface E in phase space 0. 
Each point on E uniquely defines initial conditions which determine (together with the 
Hamilton equations) a unique phase orbit. Now, the map of a point from C is defined as 
the point at which the phase orbit going through the initial point returns to for the first 
time. This mapping can be shown (Whiteman 1977, Berry 1978) to be an area 
preserving continuous bijection, i.e. an area preserving homeomorphism, or simply a 
Poincare mapping. In fact to each Hamiltonian H and a given surface E in phase space 
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@ there corresponds a Poincare mapping fH,=, so that a Hamiltonian flow in 4) generates 
a family of PoincarC mappings. Consider a given mapping fH,=. If H is conservative, so 
that the energy E = H ( p ,  q )  is a constant of motion, then for a fixed value of E the 
intersection of the invariant surface H ( p ,  q )  = E = constant with Z will be in general a 
certain ( 2 N  - 2)-dimensional region D, which we call Hill’s region (cf Churchill et a1 
1978). If the motion is bounded in phase space, then Hill’s region D will be compact, 
and the PoincarC mapping is defined on a compactum. We shall denote it simply by fD 
(assuming that the Hamiltonian H and 4) are fixed). Then the following properties are 
of primary interest: fixed points, invariant curves and invariant regions of f D  and its 
iterates fb, n = 1,  2, 3 ,  . . , . Namely, a fixed point of f2, corresponds uniquely to a 
strictly periodic orbit in phase space, an invariant curve corresponds to a quasiperiodic 
motion of the phase point on an invariant two-dimensional surface in the phase space, 
while an invariant region, which is not covered by invariant curves, corresponds to an 
ergodic component. 

3. The numerical experiment 

We now apply this method to the Hamiltonian H, from equation (2) .  Note that because 
the energy E is constant a phase orbit can be plotted in a three-dimensional space 
for which we choose ( p , p p ,  z ) ,  with a prescription for the sign of p L  = 
*(2E - p z  - 2 U ( p ,  z ) ) ” ~ .  So, a phase point is moving upward (in the z direction) in the 
space (p ,  p,, z),, reaches the boundary of the allowed region determined by the 
equation p z  = 0, and moves downward in the space (p ,  pp, 2)-. For the surface of section 
X we take the hyperplane z = 0 in phase space, so that the resulting two-dimensional 
Hill region D := D ,  v D- is defined in the three-dimensional space as follows: 

2 1/2 D+ c (p, p p ,  z = O)+ : p z  = +[2(E - U )  -p,I 

D- c (p ,  pp, 2 = 0)- : p z  = -[2(E - U )  - p , ]  

> 0, 

< 0, 2 1/2 

with the boundary determined by the equation p i  = 0, i.e. 

p ;  = 2 ( E  - U )  = 2 E  - ( L / p ) ’  - i y 2 p 2  + 2/p .  (4) 

Each point in the Hill region D = D+ v D- thus uniquely determines the initial 
condition and the corresponding phase orbit. The task of the numerical experiment is 
now to investigate the mappings f(+,-) : D,  -+ D-, f(-,+) : D- +. D,, f(+,+, : D,  + D,, 
f(-,-) : D- -+ D-, where f(+,+) = f(+,-,f(-,+, and f(-,-) = f(-,+)f(+,-) are the Poincare map- 
pings as defined in § 2. Numerically the mappingf(+,+, (or f(-,-)) is determined by taking 
each point from D ,  (or D-) ,  then integrating the phase orbit until the phase point 
returns to D,  (or D-). The point at which the phase orbit returns to the region D,  (or 
D-) defines the map of the initial point. However, as pointed out in 0 2,  fixed points, 
invariant curves and invariant regions of the Poincare mapping rather than the mapping 
itself are important. It is therefore convenient to take a point P from D,  (or D-) and to 
calculate a series of the iterated maps fi+,+,(P) (or analogously for D-), where 
n = 1 , 2 ,  3 ,  . . . , N. (The maximal N which has been used was N = 1000.) If all the 
iterates lie on a curve (= invariant curve of the mapping), then the third integral of 
motion exists for the given initial condition P. If P is a fixed point of an iterate of the 
mapping a periodic orbit in phase space is discovered. But if the iterates fill a certain 
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1 -  

l o )  
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0- 

-1 I I I I I I I I I  

region densely, then the motion is stochastic, possibly also ergodic, in some region of 
phase space. 

However, in order to study the existence of the third integral, i.e. to investigate the 
existence of the invariant curves, one can equally well plot the mixed iterates 
f(+,-)f~-,+)f(+,-)f-,+, . . . f(+,-, in the region p s  > 0 of the plane (p ,  p p ,  z = 0) starting, as in 
our case, from a point P with p z  > 0, i.e. P E D+. That means that we plot each transition 
of the phase point through the plane z = 0 rather than only those moving upward along 
the z axis, We thus generate both PoincarC mappings f(+,+)  and f(-,-) at the same time, 
and plot the invariant curves of both at the same time. Odd transitions correspond to 
f(+,+)  and even transitions to f(-,-). In this way we lose some information on fixed points 
of iterates, but nevertheless we are able to determine the stochastic transition energy (or 
critical energy). The advantage is that the calculations are half as expensive. 

Such a calculation has been done firstly for L = 1, y = 1 and for various energies. The 
integration of the Hamilton equations was performed using a very rapid and accurate 
program based on an extrapolation method. (A Cyber 172 machine of the Max-Planck- 
Institut fur Radioastronomie in Bonn was used.) The accuracy of the integration has 

1 

PP 

0- 

- -1 I I I I I I I I  

1 1 

PP - PP - 

0- 0- 

-1 / I / I / I I I I  -1 I I I I I I I I I  

Figure 2. Transition points of the orbits through the Hill region z = 0, E = constant for ten 
different energies ( a )  E = -0.3, ( b )  E = -0.1, ( c )  E = -0.05, ( d )  E = -0.04, ( e )  E = -0.03, 
( f ) E = - O . O l , ( g ) E = O ,  ( h )  E = O . l , ( i ) E = 0 . 3 ,  (j)E=OS=E,,,.  The full l ineisthe 
boundary of the allowed region. See 8 3.  
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Figure 2. (continued). 

been tested at every integration step by calculating the current value of the energy E,,,, 
which has been compared with the prescribed value E. E,,, has been seen to increase 
or decrease by less than 1 part in lo7 after the 500th iterate has been calculated. 
Sometimes the accuracy was even better, such as 1 part in lo'', depending on the 
energy E and the initial conditions. 

The results are shown in figures 2(a)-2( j ) .  The magnetic field strength y and the 
angular momentum L are set equal to unity, y = L = 1. For these values the minimal 
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energy E,,, = -0.394 3046 and the escape energy E,,, = 0.5. At  low energies, such as 
E = -0.3 and E = -0.1 in figures 2(a, b )  each point of the Hill region D lies on a certain 
simply connected closed curve formed by the iteratesfh(P) with y1 going up to 500. The 
outermost curve is the boundary itself, which is always an invariant curve by the 
Brouwer theorem on a homeomorphism on a compactum (Vinogradov 1979). 
Similarly, this theorem ensures the existence of at least one fixed point, which in our 
case is the centrum of the family of closed curves. It corresponds to a strictly periodic 
orbit in the phase space. One can also see that the curves, e.g. in figure 2(a), are almost 
periodic orbits, and fill the curve very slowly. For instance, the second innermost curve 
has almost period three, i.e. a point P on this curve is almost a fixed point off;. The fact 
that the whole region D is covered by invariant curves means That a third integral I3  
exists and is isolating for these initial conditions. The curves we see are then the 
intersection points of an invariant surface 1 3 ( p ,  q )  = constant with the plane (p,  p p ,  z = 
0). (Such an invariant surface will be discussed later.) At  higher energy E = -0.05 in 
figure 2(c) the Hill region is still completely covered by the invariant curves, but a 
bifurcation has appeared, which produced a new fixed point surrounded by a family of 
closed curves. At  a slightly higher energy E = -0.04 in figure 2 ( d )  the whole structure 
changes more drastically: some of the closed curves (those with an approximate period 
three for example) bifurcated into three disconnected closed curves belonging to the 
same orbit! That means that the phase point now periodically jumps from one loop to 
the next and slowly fills these loops. The neighbouring curve is seen to decay in a set of 
seven disconnected simple loops. However, a really interesting ‘curve’ is the next one, 
which is multiply connected. In fact, it is apparent that it is no longer a curve, since the 
corners at the intersection phpnts are filled so that their measure is not zero. This is a 
clear indication that the stability of the corresponding orbit has been considerably 
weakened and that I3  for these initial conditions does not exist in a strict sense, but is 
only effective in preventing the phase point from leaving a certain region (but not a 
surface) in phase space. Indeed, even after 600 iterations the phase point did not leave 
the ‘curve’. It is interesting to see how this ‘curve’ proceeds to smear out when going to 
higher energy E = -0.03 in figure 2(e). Here 500 iterates are plotted and we see that 
the broad belt is essentially densely filled, although it is possible that small islands 
covered by invariant curves still exist within the belt. The phenomena occurring at the 
energies E = -0.04 and E = -0.03 show that we are near a stochastic transition, i.e. 
that the energy is close to the so-called critical energy Ecrit (or stochastic transition 
energy), at which regions in phase space occur that are not covered by the invariant 
surfaces and the stability of orbits within them is lost. The neutral instability of orbits 
(Zaslavskii and Chirikov 1972) becomes even stronger as the energy is increased 
beyond E,,,,, which eventually implies decay of correlations in phase space so that the 
motion appears to be completely random. (Observe that the instability in the corners of 
the intersection points in figure 2 ( d )  has developed at the hyperbolic fixed points of an 
iterate of fD.) 

The picture at E = 0 in figure 2(g) is even more complicated. There are two fixed 
points, one in the right part (R) and another in the left part (L) of the picture. Both are 
surrounded by a set of simple closed curves. But as one goes further out these curves 
bifurcate into a chain of three loops (in the case of R) and in a chain of two loops (in the 
case of L; here the vertical pair is an invariant curve off(-,-) while the horizontal pair is 
invariant with respect to f (+ ,+) .  All other invariant curves have been found identical for 
both mappings.) If one goes still further out, a stochastic region is reached, where the 
behaviour is chaotic in view of the strong instability of orbits. A very interesting curve is 
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the envelope of the innermost closed curve around R and of the chain of three loops. 
This is shown in figure 2(f) for a slightly different energy, E = -0.01, but is essentially 
the same. At  even higher energies, e.g. E = 0.1, the regions covered by invariant curves 
rapidly diminish. In figure 2(h) with E = 0.1 only one island could be detected. It is 
filled with invariant curves around a fixed point, and surrounded by a completely 
stochastic region. Here a single orbit of iterates up to 1000 densely covers the whole 
region, starting from an arbitrary point of the region. At  the energy E = 0.3 in figure 
2(i) no island could be detected and the whole Hill region is found to be a single ergodic 
component. The same is observed (figure 2(j)) at the escape energy E = E,,, = 0.5, 
where the particle cannot yet escape, because the measure of the escape channel in the z 
direction (see equipotential lines in figure 1) is asymptotically zero, so that the particle 
cannot find a way out of the potential well. This can happen, however, at energies 
greater than E,,, by an arbitrarily small amount. Such escape orbits will be studied 
later on. 

The conclusion of this section is that the third integral I 3  exists, is isolating and 
determines the stability of orbits for all energies below the critical energy E,,,,= 
-0.04 f 0.005, and that above this energy it is effective only in a limited region of the 
energy surface, i.e. for a limited range of initial conditions compatible with the energy. 
The integral is thus certainly not analytic. The numerical result cannot be an existence 
proof, but it shows that even if I 2  is only approximate, the available numerical accuracy 
cannot distinguish between exact and approximate. No rigorous results in this regard 
are available (Zaslavskii and Chirikov 1972, Whiteman 1977), but it seems very 
plausible that the invariant curves do not cover the Hill region exactly with measure 1, 
although the measure of the complement is very close to zero. This would imply, if true, 
that the orbits possess only a certain stability property. The truly invariant curves are 
then boundaries of very thin stability bands, which cover the whole Hill region. In other 
words, either the motion of the phase point is confined to the interior of a shell bounded 
by two exactly invariant surfaces, or it moves on a truly invariant surface. In that case 
the third integral I3  must be regarded as an integral of motion which is exact everywhere 
in phase space with E <E,, , ,  up to a set of measure ‘close to zero’?. The usage of the 
words ‘4 exists’, ‘integrable’, etc should be understood in this spirit. On the other hand, 
the chaotic motion in a stochastic region of phase space is a consequence of a strong 
neutral instability (Rabinovich 1978, Zaslavskii and Chirikov 1972, Chirikov 1979), 
which is probably caused by overlapping and therefore by coupling of nonlinear 
resonances between different ‘modes of oscillation’. 

In an early work Gajewski (1970) attempted a stability analysis of the classical orbits 
in the vicinity of the potential bottom, i.e. for energies close to E,,,. Near the 
equilibrium point he developed the potential into a power series and considered the 
stability of orbits confined to the plane z = 0, so that p z  = 0. In phase space this motion 
corresponds to the simple cycling of the phase point on the boundary of the Hill region 
(see figures 2(a ) -2 ( j ) ) .  At sufficiently low energies this is of course a simple harmonic 
motion. He  further asked whether small oscillations in the z direction are stable for this 

f How close to zero? We emphasise again that the available numerical accuracy is not high enough to resolve 
the width of invariant shells and thus cannot give a quantitative answer. The possibility that the measure is 
exactly zero, i.e. that the invariant surfaces are everywhere dense on the energy surface, cannot be excluded as 
yet. Our conjecture that this measure vanishes only approximately is based on results of the KAM theory 
(Arnold and Avez 1968). On the other hand, for energies above the critical energy it has been shown by 
Henon and Heiles (1964) that the relative volume of the stochastic region increases linearly. But the width of 
the invariant shells covering the laminar islands could not be resolved as well. 
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type of motion, which is described by the invariant curves within a thin belt at the 
boundary of the Hill region. The small oscillations in the z direction are again 
essentially harmonic, but the frequency depends on the instantaneous value of the p 
coordinate, so that the z oscillator is modulated by the periodic changes of p. This is 
then a simple parametric resonance (Arnold and Avez 1968), governed by an equation 
for the z oscillations which is equivalent to the famous pendulum equation with 
harmonically varying frequency, i.e. the Mathieu equation. He therefore suggested 
that the resonant orbits, i.e. such that the frequencies of both harmonic oscillators are 
rationally connected, are unstable. However, this analysis is oversimplified for two 
reasons: firstly, the motion of the p oscillator cannot be kept fixed when the amplitude 
of the z oscillations increases due to the parametric excitation, since this would mean 
that the total energy of both oscillators is not constant. Secondly, his analysis is in fact 
linear, in that he assumes that the frequency of the z oscillator does not depend on the 
amplitude of the z oscillations. Because the frequency in fact does depend upon the 
amplitude (the so-called non-isochronicity, implied by the nonlinearity of the system (cf 
Zaslavskii and Chirikov 1972)) a resonant orbit will become non-resonant when the 
amplitude is slightly increased. This is in fact the way in which nonlinearity implies 
stability, although the system appears to be unstable when analysed to the lowest, linear 
approximation. The actual reason for an instability of a nonlinear system is the 
overlapping or merging of resonances, as has been pointed out by Zaslavskii and 
Chirikov. 

4. The dependence of the critical energy on the magnetic field strength 

Similar calculations to those described in § 3 have been performed for L = 1 and various 
values of y = 0.1, 0.5, 2 , 5 ,  10, 50. The value of the critical energy Ecrit = Ecrit(y, L = 1) 
has been determined for this discrete set of points. In figure 3 we plot the differences 
E,,,(y, l)-Ecrit(y,  1) and Ecrit(y, 1) -Emin(y, 1) as functions of the magnetic field 

Figure 3. A plot of the differences lg(E,,, - E,,,,) (full line) and lg(Ecr,, - E,,,) (dotted line) 
versus Ig y. Note that the critical energy Ecrit approaches the escape energy E,,, as a power 
with an exponent -0.9 when the magnetic field strength goes to zero. 
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strength. The critical energy lies always between E,,, and E,,,,. In the Zeeman region, 
where y is small and the Hamiltonian nearly integrable, as well as in the Landau region, 
where y is large and the system is again almost integrable, the critical energy 
approaches the escape energy. For y -+ 0 it obeys a power law with an exponent = 0.9. 
On the other hand, in the intermediate region ( y  = 1) the critical energy is lowest and 
comes close to the minimal energy. This is clearly seen in figure 4 where the relative 
critical energy ~ ( y )  := (E,,,,- Em,,)/(Ees,- E,,,) is plotted. Its minimum value F~~~ = 
0.22 is reached at ymln  = 2.7, while it approaches unity in both limiting cases. For all 
energies E >E,,,, lying in the shaded region above p ( y ) ,  the third integral I3  does not 
exist, or it exists in only limited regions of the energy surface in phase space. Below the 
critical curve we have the regular region, where I3  exists for all initial conditions 
compatible with the given energy. 

I Escape region E>€,,, I 

0 1 2 
01 
-1 

Lg (TL? 

Figure 4. A plot of the relative energy g(E, y, L)  := ( E  - EmLn)/(Eesc- E,,,) versus lg(yL3). 
The critical relative energy g(E,,,,, y, L )  = c ~ ( y L ~ )  approaches unity in the limits y -tO and 
y -t (D. In the regular band the third integral exists, while in the irregular band it exists at 
most for a limited range of initial conditions compatible with the energy. The minimum of f i  
equals 2 0 . 2 2  for yL3 = 2.7. 

5. The dependence of the critical energy on angular momentum 

We now show that the critical energy is known for each L # 0 if it is known at some 
arbitrary L ts 0, say, as in our particular case, L = 1. The reason is a simple invariance of 
the Hamiltonian Hr from equation (2) under a certain rescaling of the variables. To 
show this we write H, = H,(p, p p ,  2, p z ;  y ,  L) .  Then the following invariance can easily 
be verified: 

Hr(p, p p ,  2, p z ;  Y ,  L )  = L - 2 ~ r ( ~ / L 2 ,  PA, z/L’, P ~ L ;  Y L ~ ,  11, ( 5 )  

which simply means that the coordinates have been rescaled by a factor L-*, while time 
has been rescaled by a factor L-3, and the energy by L--2 together with y being rescaled 
by L3. We have thus 
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obeys the equations 

g(E, Y, L)  = ( E - E ~ ~ ~ ~ ( ~ L ~ ,  ~ ) ) / ( E A Y L ~ ,  ~)-E, , , (YL~,  I)), 

g(Ecr,,, Y, L)  = p(rL3), (7) 

where p ( x )  is plotted in figure 4. As a consequence? the minimal value of g(EcrIt, y, L)  is 
always equal to pmln = 0.22 and is reached at ymln sz 2.7/L3. This means that for higher 
angular momentum L, the intermediate region of strong-field mixing (between the 
Coulomb and the magnetic field) shifts to lower field strengths. The value of the 
minimal energy E,,, can be given explicitly as 

E,,,(y, L )  = (2- 3A0)/2L2A?i, ,io := A ( y ~ 3 / 2 ) ,  (8) 

(9) 

where the function A ( x )  is defined as the positive root of the equation? 
2 4  X A  z 1 - h .  

Obviously A E [0, 11. A plot of the function A(x) is given in figure 5 .  

Figure 5. The positive root A of the equation x2A4 = 1 - A  as a function of x. For small x one 
has A I 1 - x 2  and for x >> 1, A = x-l’’. 

For small x we have A (x) 1 - x2, while for x >> 1 one has A (x) I/&. Therefore 

E min , = -i,T-2(1-l 4y L +00(y4~12)), (10) 
y<< 1 

while 

Finally, it should be noted that Gajewski (1970) eliminated the field dependence of 
the Hamiltonian by an appropriate stretching of variables (rescaling of time and 
coordinates), and considered the dependence on the angular momentum L instead. 
Unfortunately, as is clear, one cannot eliminate the dependence on both parameters. 

f Observe the interesting fact that the Hamiltonian ( I )  can be brought to a form with a ‘convex linear mixing’ 
of the magnetic and the Coulomb potential by rescaling the momenta p ‘ =  Ap and coordinates q‘= q / A  with 
H ’ =  A’H. the parameter A obeying precisely the condition (9), namely A = A ( y ) .  Under this transformation 
the new Hamiltonian reads H’= p ” / 2  + (1 - h ) p ” / 8  -- A / r ’ .  i.e. for A = 0 we have no Coulomb interaction, 
while for A = 1 we have no magnetic field. 
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6. An invariant surface defined by the third integral 

Having obtained the range of energies E < Ecrit for which the third integral exists, we 
would like to get more insight into the nature of this integral. Numerically this is 
possible e.g. when we study other PoincarC mappings defined by the Hamilton system. 
The aim is to obtain intersection curves of an invariant surface 1 3 ( p ,  q )  = constant with 
different projection planes. This has been done for the case y = L = 1 and E = -0.1, for 
an orbit defined by the initial conditions p = 1, p p  = z = 0 and p ,  = [2(E - U)]”’. In 
figure 6 the intersection curve of this surface with the plane p p  = 0 is shown. The curve 

1.25 1 

- 1 . 2 5 ‘  I I 1 i I I I , 7 
0 1 P 

Figure 6. The intersection curve of the invariant surface of 8 6 with the plane p ,  = 0 and 
E = constant = -0.1. The full line is the boundary of the allowed region. 

consists of two disconnected branches and the phase point can jump from one branch to 
another. The topology of the invariant surface is revealed in figures 7(a)-7(h).  Here 
the intersection curves with the planes z = 0,O. 1,0.2,0.25,0.3,0.4,0.6,0.8 are plotted. 
The full lines (C, curves) correspond to the upward motion ( p ,  > 0) of the phase point, 
while the dotted lines (C- curves) correspond to the downward motion ( p ,  < 0). We see 
that C, and C- are conjugate with respect to the reflection p p  + - p p  and are identical in 
(p ,  p , )  coordinates when z = 0. It has been found that the curves C, and C- are also 
conjugate with respect to the reflection z + -2, so that the surface is invariant under 
( z ,  p , )  + (-2, - p z ) .  We see that the phase point is moving upward on a cylinder (defined 
by C, curves), reaches the boundary when p ,  = 0 and moves downward on a different 
cylinder (defined by C- curves). The motion is obviously quasiperiodic on the surface 
whose geometrical symmetries can be summarised as follows: 13(p, pp, z, p , )  = 

I3(p, p,, 0, - p , )  = 13(p, -pp ,  0, p , ) .  The topology of this specific invariant surface is in 
fact of the simplest kind, i.e. the surface is an invariant torus. The reason is that at 
E = -0.1 the system is not far from the case of two weakly coupled harmonic oscillators 
in the vicinity of the bottom of the potential well Emin = -0.394 3046. However, this 
type of the invariant surface is expected to be the generic case for all energies below 
the first bifurcation leasing to the appearance of a second fixed point (see 5 3 and 

13(p, p,, -2, - p , )  = 13b, -pp ,  z ,  -pJ and the special case 1 3 ( ~ ,  pP, 0, pZ) = 
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figure 2(c)). Note that most of the bifurcations observed in figures 2(a)-2( j )  are not 
generic for area preserving maps (see Greene et a1 1981 and references therein). 

7. The escape orbits 

For energies higher than the escape energy the potential lines open and the particle can 
escape to infinity along the z axis (see figure 1). A phase orbit leaving the plane z = 0 
will possibly never return to this plane, so that the plane p p  = 0 is more suitable for 
studying the escape orbits. Such an orbit is shown in figure 8(a),  where E = 0.6, while 
y = L = 1 (E,,, = 0.5). The initial conditions were p = 2.68, pp = 0, z = 0 and p L  = 
[2(E - U)]"'. The particle moves up and down while spiralling around the z axis and 
reflecting at the equipotential line E = 0.6, until it finally finds the escape channel and 

Figure 7. The intersection curves of the orbit defined by the initial conditions p = 1, 
pp = z = 0 andp,  = [2(E - U)]'" with the planes ( a )  z = 0, ( b )  0.1, ( c )  0.2, ( d )  0.25, ( e )  0.3, 
( f )  0.4, (8)  0.6, ( h )  0.8. Here y = L = 1 and E = -0.1. The full lines within the allowed 
region correspond to the upward motion (p, >O), whereas the dotted lines correspond to  
the downward motion (p, < 0) of the phase point. 
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Figure 7. (continued). 
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goes to z = --CO. It can be seen that the motion not far from the plane z = 0, say IzI b 3, is 
adiabatic, i.e. the motion becomes partially ordered, and an adiabatic invariant is 
effective. The value of the adiabatic invariant can change abruptly in the stochastic 
region near the plane z = 0. Here the Coulomb potential and the magnetic potential are 
of comparable strength, while further out, say for IzI 3 3,  the Coulomb interaction 
becomes asymptotically negligible so that $ p p  dp is an adiabatic invariant. In view of 
the stochastic motion near the plane z = 0 the particle can reach any value of the 
adiabatic invariant so as to escape. In the case of figure 8(a) three reflections were 
necessary to find the escape channel. This is also illustrated in figure 8(b)  where the 
projection (p, p p )  of the point (p, pp,  z )  at each integration step is plotted with a small 
rectangle for z > 0 and a small triangle for z < 0. This type of escape orbit has been 
found typical in the sense that no initial conditions for any E > E,,, could be found for 
which the particle would remain in a limited region of phase space. In other words: the 
stochastic behaviour near the plane z = 0 of strong mixing of potentials ensures that the 
energy condition E >E,,, is also a sufficient condition for escape. 

It seems to be a general rule that the critical energy, i.e. the stochastic transition 
energy, of a non-integrable Hamilton system always lies either below the escape energy 
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(6) 

-2 ' I I 1 I I I I I I 

0 2 P 

Figure 8. An escape orbit, E = 0.6, y = 1, L = 1, plotted ( a )  in the plane p ,  = 0 and 
projected ( b )  to the plane z = 0. See 9 7. 0 z > O ,  A z ( 0 .  

if the potential well is a single well, or below the transition energy (corresponding to a 
separatrix in phase space), at which the phase point can enter an adjacent potential well 
(when the particle moves in a double potential well). This observation is supported also 
by the numerical works by Henon and Heiles (1964) as well as by Ali and Somorjai 
(1980), who studied a double potential well. Indeed, this is what one would expect on 
physical grounds: a particle whose energy is near the escape energy is almost free, and in 
the course of its (still finite) motion passes through regions where the influence of the 
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potential is very weak. As a consequence, the motion is very sensitive to any small 
perturbations which are nevertheless comparable to the potential (in the remote 
regions). In other words, the motion of a system whose energy is close to the escape 
energy (or transition energy in the case of a double well) is unstable. (One speaks of the 
so-called neutral instability, since due to Liouville’s theorem the phase space volume is 
conserved, so that a mixing rather than unlimited divergence of orbits occurs.) In this 
regard one can consider the analogy with Sinai’s ‘billiard theorem’ (Arnold and Avez 
1968). There it has been shown that the motion of a point particle in a box with convex 
obstacles and/or concave walls is unstable and that it is in fact mixing (which implies 
ergodicity). The analogy is now in the observation that the equipotential surfaces in 
configuration space open when the escape (or transition) energy is reached. They, being 
the boundaries of the allowed region (= : box), must therefore become concave at least 
in some region. In spite of the fact that the walls are not rigid, since in the vicinity of the 
wall the particle is repelled by an approximately constant force pointing inwards and 
perpendicularly to the equipotential surface, the reflection obeys the law ‘angle of 
incidence = angle of reflection’ in the sense that its parabolic orbit is symmetric with 
respect to the point of the closest approach. One expects a qualitatively similar 
influence of the boundaries of the box on the motion of the system as a whole; the 
system should be unstable. A generalisation of the Sinai theorem to the case of a box 
with soft concave walls is thus of great interest. A rigorous proof would explain the 
‘rule’ observed in numerical experiments. 

However, matters are not as simple as they seem. Clearly, such a rough criterion 
overestimates the role of the boundaries and underestimates the interactions with the 
potential in the interior of a box. A precise formulation of the criterion is more 
involved. This is shown by table 1 where the numerically determined critical energy 
E,,,, is compared with the energy Egeom at which the equipotential line U(p, z )  = 
Egeom = constant becomes concave in some region (i.e. its curvature becomes negative). 
Egeom is neither the upper nor the lower bound for the critical energy, but its value is not 
far from E,,,,. 

Table 1. Comparison of the critical energy E,,,, with the energy Egeom at which the 
equipotential line is concave for the first time as the energy is increasing. (The value of the 
angular momentum L is equal to  unity, L = 1.) 

0.1 -0.1531 -0.025 * 5 
0.5 -0.0942 -0.055 * 5 
1 +0.0413 -0.040 * 5 
2 +0.3895 +0.10 * 5 
5 +1.611 +1.30*5 

10 +3.810 +3.65 zt .5  

50 +22.597 +22.9* 1 

8. A summary of the classical case 

We conclude (see figure 4) that for energies E smaller than the critical energy Ecrit the 
third integral exists and the Hamilton system is (nearly) integrable. When the energy E 
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lies in the irregular band, i.e. when p ( y L 3 )  S g(E, y,  L) C 1, the system is stochastic and 
I3  exists at most in small islands of the initial conditions, whose measure goes to zero as 
the energy approaches the escape energy. Above the escape energy, i.e. when 
g(E, y ,  L )  > 1 or E >Ee,, = i y / L I ,  the particle can escape to infinity ( z l =  CO, and its 
motion again becomes partially ordered in the sense that the adiabatic invariant $ p p  dp 
is effective, becoming asymptotically an exact constant of motion as lz/-+00. The 
motion is, however, still stochastic near the plane z = 0, where the Coulomb and the 
magnetic potential can be of comparable strength. The energy condition E >Ee,, is a 
sufficient condition for escape. 

Figure 4 shows that the width of the irregular band decreases rapidly as one 
approaches the limiting cases y -+ 0 or y -+ 00, so that the Hamiltonian is then nearly 
integrable for almost all energies. The maximal width (with respect to varying y and L) 
of the irregular band equals 0.78 and is reached for ymin = 2.7/L3. 

In the limit L -+ 0 we have Emin(y, L)  -+ -a, Eesc -+ 0, while Eesc(yj L )  - Ecrit(y, L )  = 
L-2(Eesc(yL3, 1) - ECrit(yL3, 1)) cc L-2(yL3)0.9 -+ 0. Hence in the limit L -+ 0 the critical 
energy comes arbitrarily close to the escape energy uniformly for all finite y ,  and the 
Hamiltonian is then integrable for all energies below the escape energy E,,, = 0. 

9. Relation to the quantum mechanical problem 

The analogy between classical and quantum mechanics when formulated as Lie 
algebras of Poisson brackets is striking, but cannot be raised to an isomorphism 
(Abraham and Marsden 1978, Kundt 1966). This presents undoubtedly serious limits 
to a straightforward parallelism between the classical and quantum mechanical proper- 
ties of a Hamilton system. 

Our case does not seem to suffer from the non-existence of the general homomor- 
phism. Our conjecture is that a quantum mechanical counterpart of the third integral of 
motion I3 exists for E <E,,,,. It is precisely the dynamical symmetry generated by this 
quantum mechanical constant of motion which has been detected in the numerical 
experiment by Zimmerman et a1 (1980). They studied the energy spectrum of the 
Hamiltonian (2) with L = 0, and y in the range between 4.26 X (i.e. 
the magnetic field strength IOTCB s 103T). They inspected the energy levels below 
the zero-field ionisation limit E = E,,, = E,,,, = 0 which lie in the classical regular band. 
The observed crossings and/or close anti-crossings are therefore in complete 
agreement with the existence of the third integral I3  and support the conjecture above. 
Not in agreement is their observation that the separation of the anti-crossings rapidly 
diminishes as the energy of the levels increases. From the classical behaviour of the 
Hamiltonian one would expect that the dynamical symmetry is most effective at loJw, 
energies, whereas Zimmerman et a1 conclude the opposite. The reason for this 
discrepancy might be explained when more is known about the approximate dynamical 
symmetry. 

Of course, a final confirmation of the conjecture can be supplied only when the third 
integral of motion I3 and the corresponding quantum mechanical observable (com- 
muting with the Hamiltonian) are explicitly constructed. As mentioned in the Intro- 
duction, algorithms for the construction of formal integrals of motion in classical 
mechanics are known, but can be so complicated that a computer must be used to do all 
the algebraic manipulations (Gustavson 1966). In the case of the Henon-Heiles 
potential (1964), the invariant surfaces defined by the formal integral of motion agree 

and 8.52 x 
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with the numerical calculations for all energies below the critical energy. We therefore 
propose to use such an algorithm in order to construct a formal integral of motion which 
is close to I3  in the regular band (figure 4). The same algorithm can, we hope, be 
translated into the language of quantum mechanics, so that a construction of the 
corresponding quantum mechanical constant of motion could be done along with the 
classical one. The accuracy of the formal result can be tested by comparing the invariant 
surfaces generated by the formal integral with those calculated in this work. Once we 
have constructed the formal constant of motion corresponding to I3  we can use it to 
approximately separate the Schrodinger equation. In this way we hope to obtain more 
accurate values of the energy eigenvalues, as has been suggested by Zimmerman et a1 
(1980). 

However, from our classical calculations it is clear that this approach can be 
successful only for a limited range of energies, namely only for levels below the critical 
energy. It is expected that above the critical energy such a method fails, since the 
classical Hamiltonian is stochastic. It should therefore be extremely interesting to study 
the energy spectrum for the levels in the vicinity of the critical energy in order to see 
whether the spectrum changes qualitatively at the transition between the regular and 
irregular bands. For this purpose more calculations like that by Zimmerman et a1 
should be performed. 

A reason for the usefulness of the classical calculations of the present work is not 
only a determining of the conditions for the existence of the constant of motion (note 
that we have determined the critical energy for a large range of the magnetic field 
strength and for all values of the angular momentum L). An investigation of the 
correspondence of the classical and quantum mechanical non-integrable Hamilton 
systems is of general interest. Although a lot of work has been done in this respect 
(Percival 1979, Gutzwiller 1978, Berry 1978, 1980, 1981, 1982), we still lack a clear 
understanding of the subject. In particular, the problem of the hydrogen atom in a 
magnetic field could serve as a test object of the ideas by Percival. He studied the 
quantisation of the Henon-Heiles potential and proposed to distinguish between the 
regular energy levels (with energies lying in the regular band, i.e. below the critical 
energy), and the irregular levels (corresponding to the irregular band). The former have 
been found to be stable under small perturbations of the Hamiltonian, while the latter 
are unstable and in contrast to the regular levels randomly distributed. There is, 
however, from what we know about the hydrogen atom in a magnetic field, no clear 
evidence for such a clean classification of the energy levels. A recent work by Clark and 
Taylor (1980) seems to be consistent with the existence of the irregular levels above the 
critical energy. 

10. A note on the correspondence diagram 

Since angular momentum and parity together with the energy are not the only existing 
symmetries of the Hamiltonian (l), one cannot simply use the Neumann-Wigner 
non-crossing rule for the energy levels (of given parity and given angular momentum) as 
functions of the magnetic field strength. Due to the third symmetry, crossings and/or 
close anti-crossings (with separation possibly less than the natural line width) are 
allowed, depending on whether the dynamical symmetry can be considered exact or 
approximate. Therefore it is clear that even the question of the correspondence 
diagram relating the levels in the Zeeman and Landau regions cannot be answered at 
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present. Many different proposals have been made in this respect (Simola and Virtamo 
1978, Garstang 1977, Rau and Spruch 1976, Robnik 1980a, b). In the latter work I 
stated a theorem on the nodal structure of the wavefunctions of a pure quantum 
mechanical state, and claimed that the number of nodal cells defined by the nodal 
surfaces in configuration space is a conserved quantity (adiabatic invariant) and can be 
used to establish the correspondence diagram. The proof was based on a lemma that 
the volume of a nodal cell is uniformly bounded from below when the energy is 
uniformly bounded from above, so that a newly formed nodal cell cannot have 
arbitrarily small volume. The lemma thus prohibits the disappearance of an (N - 1)- 
dimensional boundary between two nodal cells in N-dimensional configuration space. 
The theorem is thus valid in one dimension, N = 1. In a many-dimensional configura- 
tion space two nodal cells can touch in a surface of N - 2, N - 3, . . . , 1 , 0  dimensions, 
whose diappearance is not forbidden by the lemma, so that a new, larger nodal cell can 
be formed by merging of two cells along an ( N  - 2), (N - 3), . . .-dimensional boundary. 
The proof, therefore, contained a gap. While the lemma (Robnik 1980b) is correct, the 
theorem must be considered as false for all N except N = 1 and the correspondence 
diagram as a mere conjecture like that by Garstang (1977) which was based on 
arguments by Rau and Spruch (1976). However, it might appear that the number of 
nodal cells generically (i.e. in almost all cases) is a conserved quantity, e.g. when the 
spectrum is non-degenerate (Albert 1973, Uhlenbeck 1976). 

11. Conclusions 

We have seen that for the hydrogen atom in a magnetic field as a classical Hamilton 
system there exists a critical energy E,,,, for each value of the angular momentum and 
magnetic field strength, which lies above the minimum energy E,,, of the potential well 
and below the escape energy E,,,. It approaches the escape energy in the limits of 
vanishing and very large magnetic field strength, while it is lowest in the intermediate 
region where y = 1, i.e. B =Bo = 2.35 x l o9  G.  For energies E between E,,, and E,,,,, 
the third integral exists and is isolating for all initial conditions compatible with the 
energy surface E = constant (regular band). For energies E between the critical energy 
E,,,, and the escape energy E,,, regions of initial conditions exist in which the system is 
unstable and behaves stochastically. As the energy E approaches the escape energy 
E,,,, the system becomes completely stochastic. 

The existence of the third integral is in agreement with the numerical calculations of 
the quantum mechanical energy levels made by Zimmerman et a1 (1980), who 
concluded that an approximate dynamical symmetry of the Hamiltonian must exist. 
They assumed that the symmetry is more effective at higher energies, whereas the 
present classical calculations show the opposite. To  clarify this discrepancy it is 
suggested to perform Zimmerman’s calculations also for levels above the critical 
energy, i.e. in the irregular band. (Unfortunately, their calculations performed so far 
refer to the levels of even parity and zero angular momentum L = 0, in which case 
E,,,, = E,,, = 0, so that all levels inspected in their work lie in the classical regular band, 
i.e. below the critical energy.) 

Their suggestion to use this dynamical symmetry in order to approximately separate 
the Schrodinger equation and to obtain more accurate values of the energy levels should 
be followed along these lines: (i) construct the formal integral of motion using an 
algorithm like that by Gustavson (1966); this is not a trivial procedure and one has to 
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use a computer to do all the algebraic manipulations; (ii) compare the invariant surfaces 
defined by this formal integral of motion with those obtained in this work; this shows the 
accuracy of the formal result; (iii) the formal integral is to be translated into its quantum 
mechanical counterpart; (iv) finally, one solves the Schrodinger equation. 

However, this procedure cannot be successful where the third integral does not 
exist, i.e. in the irregular band E > Ecrit, and cannot yield the complete energy spectrum. 
In the irregular band one cannot abandon the usage of either quasiclassical methods, 
like that by Gutzwiller (1980), or the numerical methods. Of course, both approaches 
are important. In particular, it would be interesting to  see what is the qualitative 
difference (if any) between the spectra in the regular and irregular bands. This question 
is of general interest in the quantisation of non-integrable systems. 

Concerning the study of general properties of classical non-integrable Hamilton 
systems, two problems are of central importance on which more work should be done: 
(i) the investigation of the precise nature of the third integral; is it exact or approxi- 
mate?; are the invariant surfaces everywhere dense on an energy surface E =  
constant < Ecrit, or not? (ii) is it possible to generalise Sinai’s billiard theorem to the case 
of a box with soft and concave boundaries; this would explain the observed ‘rule’, that 
the stochasticity sets in below the escape (or transition) energy, i.e. Ecrit< E,,,. 

From the general point of view, the problems indicated are important because they 
are, in fact, bridges between classical mechanics, quantum mechanics and statistical 
mechanics. We may hope to  understand their interrelations in greater depth when 
solving such problems. 
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